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Abstract—This research addresses the problem of planning
efficient paths for agents through flow fields in small real-world
domains where vehicle dynamics and environmental uncertainty
can significantly affect the optimality of a path. In particular,
we consider the task of planning routes for small autonomous
airboats deployed in various river domains so as to best take
advantage of water currents to save energy and time. Existing
planning techniques for flow fields were implemented on our
airboat platform and evaluated on these domains with cur-
rent models developed from the data gathered using a Nortek
AD2CP-Glider acoustic doppler current profiler. The real-world
performance of these algorithms were compared to theoretical
estimates and several modifications are suggested to improve their
performance in specific domains.

I. INTRODUCTION

The problem of planning efficient routes for agents is of
great importance across domains in mobile robotics, where
energy is at a premium. In domains involving movement
through fluids which themselves may be moving, such as
flight through various wind patterns or navigation through
river currents, it is understandably desirable for algorithms
to harness the available kinetic energy in the environment
to decrease a robots overall energy consumption. Successful
implementation of such techniques in turn facilitates new
robotic applications involving extended deployment range and
duration (e.g. autonomous environmental monitoring of long
stretches of rivers and coastal surveillance).

A. Prior Work

This particular domain has motivated much research in
the past and many planning algorithms have been adapted
or developed to solve this problem. In their work, Garau,
Alvarez, and Oliver assume constant thrust navigation and
use the A* algorithm to compute the optimal paths for a
set of different current and eddy distributions [1]. Warren
has proposed a method based on artificial potential fields,
which is less susceptible to local minima but requires most
of the global workspace to be known and does not account
for variabilities in the flow [2]. A method using the forward
evolution of level sets that can produce time optimal paths
assuming a constant vehicle velocity through time dependent
flow fields was developed by Lolla et al [3]. In their work on
autonomous underwater gliders, Davis, Naomi, and Fratantoni
develop a variational calculus approach for path planning
through time invariant velocity fields of comparable magnitude
to the operating velocities of long range gliders [4].

B. Motivation

Many of the proposed algorithms make simplifying as-
sumptions regarding the vehicle dynamics and oftentimes
operate with at least some model of the environment. Although
this makes for efficient performance in simulation, in reality
measuring the rate of a moving fluid while moving through that
fluid is difficult and developing a detailed environmental model
beforehand is impractical and not robust to unexpected events.
Further difficulty comes from the inherent uncertainty of state
estimation, as even small differences in a robots perceived
state can yield very different optimal paths to the goal state,
as evident in Figure 1 below. The plot on the left shows
time-optimal paths for a boat travelling at a fixed velocity
upstream in a river against parabolic current distribution of
varying intensities. The plot on the right simillarly shows time-
optimal paths for a boat travelling up river, however, this time
the current distribution is fixed while the vehicle velocity is
varied. These results help illustrate just how sensitive optimal
paths can be to variations or uncertainty in the environment,
and they offer compelling motivation for analysis of the path
planning algorithms o the theoretical realm and in the field.

This paper describes the ongoing work to adapt and deploy
existing planning techniques on a low-cost autonomous airboat
platform for the purpose of experimentally verifying their the-
oretical performance and improving them. In order to limit the
scope of the experiments to be done, this research emphasizes
the analysis of path planning techniques for use in different
river domains. The relative size of the domains under scrutiny
with respect to these vehicles is such that the dynamics of
the agents have significant bearing on their optimal paths and
can no longer be assumed negligible when path planning. The
following section provides a more detailed discussion of the
airboat platform, our river domain simulation representation,
and level set evolution techniques for path planning.

II. METHODOLOGY

The planning algorithms under research were adapted
for and implemented on the Cooperative Robotic Water-
craft (CRW) platform developed at the Robotics Institute of
Carnegie Mellon University. In order to provide feedback
on the current distribution in the river, the CRW platform
is equipped with the Nortek AD2CP-Glider acoustic doppler
current profiler.



(a) Fixed Velocity, Varying Currents (b) Fixed Currents, Varying Velocities

Fig. 1: Optimal Paths Generated for Various Current Distributions and Vehicle Velocities

A. Testing Platform

The testing platform chosen for this research is the Lutra
1.0 series of the Cooperative Robotic Watercraft system devel-
oped at the Robotics Institute of Carnegie Mellon University.
This low-cost platform with limited thrust and a slim onboard
energy storage budget exemplifies systems which could benefit
greatly from the use of intelligent path planning algorithms to
extend their operating capabilities. The hull of the platform,
shown in figure 2 is built using vaccuum-formed ABS, filled
with expanding polyurethane foam. The shallow hull design
enables the airboat to cruise even on very shallow, debris-
filled waters. The high maneuverability of the CRW system can
be attributed to the unique propulsion system. The propulsion
system is composed of a ducted propeller assemby built using
high impact acrylic and pvc. The propeller attached to a
brushless motor and the entire propulsion assembly is actuated
by a waterproof servo motor. The hull of the airboat has a built
in electronics compartment which is then sealed from the top
using a deck plate-gasket assembly. The deck plate is equipped
with a phone mount which houses an Andriod smartphone
and a custom made embedded computing board. The entire
system is powered by two 8000mA lithium polymer batteries
wired in parallel. All the algorithms are built into a custom app
which runs on the Android smartphone, which also provides
integrated intertial sensors and GPS for navigation.

A Nortek AD2CP current profiler is interfaced to the CRW
system though the sensor ports on the computing board. The
profiler has five 1 MHz transducers, a pressure sensor and
a temperature sensor. The profiler is itself powered using an
internal 7500mAh alkaline battery pack. The Nortek AD2CP
can be used for obtaining absolute velocity profiles of the
water. The velocity measurements provided by the profiler
can be further processed to obtain depth averaged velocity if
required [5].

These characteristics of the CRW system make it an ideal
candidate for the deployment of the efficient algorithms this
research seeks to produce; as a low-cost autonomous monitor-
ing system, the CRW platform carries a limited energy supply,
making it desirable to optimize navigation and sampling pro-
cedures as to maximize the information that can be gathered
before recharging is necessary. A more detailed treatment of

Fig. 2: A Complete Lutra 1.0 Series Autonomous Airboat

the platform can be found in our previous publications [6] and
[7].

In order to take into account the vehicle dynamics, it was
necessary to develop a rough dynamic model for the system.
The airboats were measured under controlled conditions in the
lab and deployed at a nearby lake in order to characterize the
system parameters. The resulting dynamic model is of the form
show below:

m~̈x = −~b~̇x2 + ~F

Jθ̈ = −bθ θ̇2 + ||F ||L sinφ

where m is the mass of the vehicle,~b is the vector of linear drag
coefficients, ~F is the force vector applied by the propulsion
assembly, J is the moment of inertia of the vehicle, bθ is the
torsional drag coefficient, L is the moment arm of the vehicle,
and φ is the angle of the propulsion assembly.



B. Planning Algorithms

The level set method described by Lolla et al. in their
paper is a two phase algorithm where the first part involves
propagating an interface (denoted as the zero level set of the
signed distance function φ) forward in time, and the second
part entails tracking a particle back from the goal state along
the normal vectors to the intermediate interfaces [3]. The
interface being tracked actually represents the farthest set of
points reachable by the vehicle at any point in time, under some
fairly strict assumptions. The process modeling the evolution
of this interface is constructed as a Hamilton Jacobi partial
differential equation, which is then solved discretely over a
grid. The general form of this PDE is given below.

0 =
δφ(~x, t)

δt
(1)

+ F |∇φ(~x, t)| (2)
+ V (~x, t) · ∇φ(~x, t) (3)
− b(~x, t)κ(~x, t)|∇φ(~x, t)| (4)
+ λ(~x, t)φ(~x, t) (5)
+H(~x, t, φ(~x, t),∇φ(~x, t)) (6)

Lines 1 and 6 make up the general form of the hamilton
jacobian partial differential equation, however, these general
form equations are typically more difficult to solve. Therefore,
there are a few terms that are sometimes added, which are
specifically constrained and can be more easily solved. In their
algorithm, Lolla et al use only the terms on lines 1, 2, and 3
to represent the farthest points reachable by some vehicle in a
given amount of time. Line 2 represents motion normal to the
level set at a constant speed F , while line 3 represents motion
due to the external velocity field. In using this representation,
Lolla et al make the assumption that the vehicle is always
traveling at speed F normal to the level sets. Furthermore, their
method relies on having exact knowledge of the velocity field
V and how it will change over time. Clearly these are not the
best assumptions to make for real world implementation, which
further motivates our objective of producing an algorithm that
calculates paths more true to the dynamics of the vehicle.

After the interface has evolved far enough that the goal
state is within the signed distance function, the forward evolu-
tion terminates and a particle is traced back along the normals
to the intermediate instances of the tracked interface. Lolla et
al prove in their work that if a vehicle always travels at speed F
in a normal direction to the set of its currently reachable states,
and the external velocity field V (~x, t) is known perfectly for
all times, then the path computed by this algorithm is time-
optimal.

In our level set experiments, we made use of Ian Mitchell’s
Matlab Level Sets Toolbox, which implements several partial
differential equation solvers [8]. For consistency we chose
to use a single domain for all of our simulations - a river
40 meters across, with a current distribution modelled after
fully developed pipe flow. Figure 3 illustrates our simulation
domain.

The green borders on either side of the domain represent
the banks of the river and are treated as forbidden regions
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Fig. 3: Simulated River Domain

during planning. Two additional forbidden regions, denoted
with dashed black lines in the domain diagram, were added
running five meters out from each bank as a precaution to
keep boats from getting stuck in shallow water when the
algorithms are deployed on boats in the field. Initially the
method of forbidden regions described by Lolla et al in their
work was implemented, where the external velocity field is
zeroed out and the normal velocity of the vehicle is held at zero
within these regions. Unfortunately when such a discontinuous
change in velocities was introduced, certain scenarios would
experience numerical instabilities while solving the partial
differential equations; after the level set evolution reached the
discontinuity, the interface would sometimes develop unstable
distortions that would magnify during propagation and produce
inaccurate paths.

In order to remedy this issue, the external velocity field
was treated as a cost function and its lower dimensionality
was exploited to eliminate the discontinuities while retaining
the guarantee that the optimal path will never lie within the
forbidden regions. Since our domain description assumes the
river has the same parabolic current distribution along its
course, we can define the cost function to be proportional
to the velocity of the river. When the goal state is upstream
from the vehicle, the cost function is postive because the agent
must fight against it and when the goal is downstream the cost
function is negative because the boat is moved towards the
goal by the current. Using this definition, we can exploit the
lower dimensionality of the cost function (i.e. the fact that for
a given X coordinate, the cost function does not vary as you
move up or down stream) and apply the theorems described
by Vernaza and Lee [9]. They prove that when a cost function
does not vary in some dimension, then the optimal path to the
goal will never move away from the goal in that dimension.
Therefore, it must be that in our particular domain, the boat
will never head downstream when the goal is upstream and
vice versa. If we consider the forbidden regions again, and
simply clamp the value of the external velocity field in these
regions to the value at the boundary of the region, our cost
function no longer varies in the X direction in these regions
and therefore the optimal path will never head away from the
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Fig. 4: Path of Boat Aiming Straight at the Goal

goal along the X axis in these regions as well. If we define
the goal state as always lying outside of a forbidden region,
this guarantees that the optimal path will never cause the boat
to head into the forbidden regions, which we defined on the
banks of the river. With just this small modification to the
external velocity field, the discontinuities are dealt with and
the level sets can be evolved to generate smooth and optimal
paths.

III. RESULTS

Using the simulated river domain described in the previous
section, we were able to examine a variety of scenarios and test
the efficiency of several path planning and navigational strate-
gies. In the following subsections, we present several solutions
to one planning scenario and evaluate their performance. The
scenario shown involves planning a path for a vehicle initially
at the point (10,−20) to the goal position, (−10, 20). The
maximum thrust of the vehicle is limited to 3 Newtons and the
average velocity of the river current is 0.25 m/s downstream
(i.e. along the negative Y axis).

A. Point and Shoot Heading Controller

For a simple baseline with which to compare the per-
formance of the level set planner previously described, we
implemented and evaluated a Proportional-Derivative Heading
Controller that would consistently attempt to aim the front of
the vehicle towards the goal. In our implementation we allow
for control of the propulsion assembly angle, but fix the thrust
at 3 Newtons and use an ordinary differential equation solver
to compute the motion of the craft. After starting at rest and
facing upstream, the controller guided the boat straight across
the river, with no regard for the fast flowing currents, as shown
in figure 4.

B. Heading Controller Tracking a Precomputed Path

In order to use the level set planner to compute a time
optimal path for this scenario, we made the assumption that
the boat would be able to maintain a constant velocity while

t = 69.697
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Fig. 5: Path Planning Process using Level Set Evolution
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Fig. 6: Trajectory of Simulated Vehicle Tracking Path

moving. In order to compare energy usage estimates with
those of other methods we chose to use a constant velocity
corresponding to slightly below the terminal velocity for our
platform when 3 Newtons of force are applied. Figure 5 shows
the path computed by the level set planner for this scenario and
under these assumptions. Next we developed another controller
to attempt to guide a boat along the planned path to the goal
at a constant 3 Newtons of thrust. Figure 6 illustrates the
performance of this controller; the red path is the orignally
planned path while the blue path is the path actually travelled
by the simulated vessel.

C. Heading Controller Following a Dynamic Path

Another path planning solution we developed and tested
begins like the previously described method that precomputes
an optimal path with level sets and makes use of a heading
controller to track this trajectory. After a specified time period
(here we use 5 seconds), however, this modified planner will
recompute the optimal plan based on the updated state of the
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Fig. 7: Trajectory of Simulated Agent with Intermediate Paths

vehicle and the freshest environmental data available. When
the controller recieves an updated trajectory to track, it throws
away its outdated plan and continues tracking towards the
goal. Unlike the previous method of precomputing a path and
following it, this path planning technique can adapt to sudden
current variations, environmental uncertainty, and even failures
of a car to track the planned path perfectly. Figure 7 shows the
path of the autonomous agent in blue, and all the intermediate
paths computed during operation in red.

IV. CONCLUSION

For each of the solutions described to the scenario in
the previous section, we collected some performance metrics
and provide them for comparison in table I. Each row in
this table corresponds to a different solution and includes the
time the path took to traverse, the distance travelled along
the route as seen by a stationary observer on shore, and an
estimate of the energy consumed while driving the path. After
examining the results, there is a clear advantage going with
the path precomputed by the standard level set planner, as
long as the platform for which we are planning can manage
to successfully track the precomputed route. From the table
we see that the attempt to track the single precomputed
path ended up using more time and more energy than any
other solution. The iteratively replanning technique will adjust
appropriately after the next timestep if it detects that the craft
is failing to track the trajectory well or maintain the desired
speed. In fact, the replanning method even performs well when
compared to the simple point and shoot heading controller,
especially considering the additional complexity and turns on
the dynamic replanning route. Additional scenarios will be
examined to further investigate these findings and improve
upon these techniques.

A. Future Work

Due to unforeseen manufacturing delays, the Nortek
AD2CP acoustic doppler unit was not ready to have data from
field tests included with this paper. Currently field experiments
are scheduled to begin in mid August when we will attempt to

TABLE I: Performance Metrics

Time (s) Distance (m) Energy (J)

Point and Shoot Path 84.9757 48.3823 9432.3027

Precomputed Path 69.697 56.1515 7736.367

Tracking of Precomputed Path 89.0769 58.5308 9887.5359

Tracking of Dynamically Replanned Paths 85 61.5848 9435

validate the results and models obtained thusfar in simulation.
Data from these field tests and ongoing simulation work will
be presented at the conference.

Further in the future, it would be interesting to examine
how changing the speed of the agent can affect the optimality
of the route, and investigate how to plan where to slow down
or speed up in order to get the best time or lowest energy
consumption overall.
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