
Design, Verification and Validation of Distributed Artificial Intelligence
from Simulations to Reality

James Edmondson1, Christopher Tomaszewski2, Cormac O’Meadhra2, Jeffrey Hansen1, and David Kyle1

Abstract— Researchers and practitioners of distributed ar-
tificial intelligence (AI) face a large number of challenges
when building reliable systems for real world applications,
especially in outdoor robotics. Distributed AI research presents
additional issues beyond the software and hardware problems
commonplace in robotics; researchers must manage emergent
behaviors, complexity of distributed systems of systems, and
verification and validation of distributed AI capabilities against
mission, safety, and quality-of-service requirements in outdoor
robotics systems. In this paper, we present a design process for
mission-focused distributed AI capabilities that includes open
source middleware offerings for taking simulated robotics to
reality. We then describe a verification and validation process
that uses statistical model checking to verify algorithms/AI
within confidence intervals in simulated environments before
transitioning distributed AI algorithms into real world au-
tonomous surface vehicles in lakes.

I. INTRODUCTION

Researchers and practitioners of distributed artificial intel-
ligence (AI) and multi-agent systems (MAS) face a myriad
of issues when developing distributed systems, especially
for outdoor robotics applications. In addition to normal
communication/localization/hardware problems caused by
the environment, there is the more fundamental problem
of designing, verifying and validating what is essentially
a system of systems. It is difficult enough to design and
validate a single robotic system and its interactions with the
environment. Adding multiple agents and even swarms of
robots that are constantly communicating with each other
causes additional complications due to emergent behavior,
i.e., properties and behaviors that emerge in the designed
system that were not intended and are almost always detri-
mental towards the mission of the distributed system.

Understanding what a distributed system like a MAS
is capable of and how it will operate in a real world
environment is made more difficult by the types of primitives
MAS developers are forced to use by popular Multi-Agent
Software Frameworks (MASF). General purpose robotics
software suffers from an algorithmic design problem that is
directly tied to how traditional networking middlewares are
being developed. Modern MASFs focus on paradigms such
as message passing, publish/subscribe and remote procedure
calls as the primary development primitives presented to
developers. This is a direct result of roboticists and AI re-
searchers harnessing software products from the middleware
community in traditional distributed systems development

1Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA 15213, USA

2Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213,
USA

from software packages like ACE, CORBA, MPI, ZeroMQ,
DDS, etc.

Harnessing existing tools provides the MAS community
with abundant tools for recording data as it passes between
agents. Some toolkits, such as ROS or Stage/Player, use
this logging to provide developers with the ability to replay
events to figure out what went wrong. However, forensic
replays are only valuable if researchers and developers can
figure out how to use the tools to design a distributed AI
in the first place. Additionally, replaying events between
two agents is unlikely to be enough for MAS developers to
pinpoint causes of emergent behavior or distributed mission
failure amongst many agents. For an AI researcher, being
an expert in message passing or pub/sub does not readily
map to planning movement, implementing a collaborative
algorithm or anything remotely AI-focused. The MAS re-
search community would greatly benefit from a system that
provides a more intuitive way of designing MASs and a
more streamlined approach to verification from concept to
simulation and reality, especially as a means of identifying
emergent behaviors early and not during deployment.

In the next sections, we will discuss a different method
for prototyping MASs for outdoor robotics that moves users
away from focusing on message passing primitives and
instead uses knowledge-based programming of a MAS. We
use the BSD-licensed open source projects Multi-Agent
Distributed Adaptive Resource Allocation (MADARA) [10],
which provides a distributed knowledge base, and the Group
Autonomy for Mobile Systems (GAMS) [8], [9] project to
provide algorithm, simulation and hardware platforms for a
MAS, built on top of MADARA. We then create an example
mission-focused algorithm that can be evaluated in realistic
simulations of quadcopters and boats and uses statistical
model checking in a project called DEMETER [13] to verify
correct operation within a certain confidence interval. Finally,
after achieving confidence through large scale simulations,
we deploy the GAMS algorithms into a MAS of unmanned
surface vehicles deployed in lakes to validate the algorithms
in a real world outdoor setting.

II. RELATED WORK

A. MAS Development Tools

Multi-agent systems have benefited from a wide variety
of middlewares, tools, and development kits [17], [25]. The
more popular offerings available that feature support for
simulation to reality transition are Player/Stage/Gazebo [12],
[6], [2], JADE [1] and ROS [21], [7]. Player, JADE and
ROS include simulation support, and Player provides both



a 2-d and 3-d simulation environment (Stage and Gazebo,
respectively). Each offering creates TCP or HTTP network-
ing interfaces between robotic agents that work in POSIX
operating systems, and each has been used for real-world
multi-agent systems. However, applications built with these
toolkits are forced into networking models and settings
that degrade performance, dependability and predictability in
outdoor settings due to blocking behaviors that suffer during
even brief communication outages. Because of the blocking
communication, it is also very difficult if not impossible to
formally verify ROS or Player applications.

In contrast, we are using the MADARA and GAMS mid-
dlewares which were built for outdoor, decentralized agents
and focus on asynchronous protocols like UDP unicast,
broadcast and multicast that recover quickly from network
connectivity loss and reconnection because no queues are
kept of old data. Unlike ROS, Player and other middleware
offerings that focus on message queues, sockets, client/server
interactions, pub/sub and explicitly setting up messaging be-
tween agents, the GAMS/MADARA paradigm allows multi-
agent system developers to focus on knowledge interactions
and the logical structure and flow of a finite-state machine or
rule-based system, rather than trying to reason about higher-
level interactions based on message flows.

B. MAS Validation Techniques

The main limitation of validation techniques for MAS
is not that techniques do not exist, but that all work that
we know of is being applied to temporal logics [11] or
epistemic logics [19], [20] that do not adequately map to
existing MAS development tools. Verification and validation
are traditionally done in simulations and with unrealistic
targets that do not feature noisy environments (e.g., GPS
inaccuracy) or prolonged network drops. In fact, most formal
methods techniques for distributed algorithms assume perfect
communication and may even only model instantaneous
shared memory to limit state space explosion and make
verification more tractable. One of the more interesting things
about using a distributed knowledge base approach like that
in MADARA, is that verification tools that require a shared
memory model may be applicable to MADARA since it
creates a distributed knowledge base that resembles a shared
memory model. Other simulation-based formal methods have
been based on running large scale multi-agent simulations,
analyzing logs, and applying statistical model checking to
the logs to retroactively prove something about the system
[14].

Probabilistic model checking [24] shows promise in deal-
ing with the high variability and randomness of real-world
robotics but in different ways to theoretical constructs.
Probabilistic model checking models a system as a finite
state probabilistic automaton, generally as a type of Markov
Decision Process (MDP) or Discrete Time Markov Chain
(DTMC), expressed as a formula in a temporal logic. This is
in contrast to statistical model checking [28] and the usage of
Monte-Carlo simulations, effectively treating a system like a
black box that is being influenced by random variables.

For our work, we decided to use a statistical model
checking technique that allows for incorporation of lega-
cy/proprietary systems and modeling a system based on its
variability instead of trying to perfectly represent timing
and other characteristics as required in MDPs and for-
mal method techniques like software model checking [15],
which must exhaustively verify all properties of a system.
Specifically, we use a tool called DEMETER that allows us
to run massively parallel black-box simulations, aggregate
statistical information, and provide certain types of input
attribution to identify random variables in the distributed
system and environment scenario that may result in mission
failure. Applications using GAMS and MADARA have been
verified before using software model checking [4], [5], but
this is only applied to a synchronous models of computation
(SMoC). A SMoC in distributed systems tends to require a
barrier between each mission step to assure safety/collision-
avoidance in movements throughout participating agents.
Though useful in some situations, a SMoC requirement is
very vulnerable to communication outages and also does not
work in most adversarial conditions where an agent is not
participating in the barrier (allowing the adversary to take
advantage of slow barriers that prevent responsive movement
in participants).

III. SOLUTION APPROACH

A. Designing MAS Algorithms

To design AI with our approach, users need only think
about how agents should make decisions and not on how data
will be passed between agents. This is a significant change
from the way that distributed AI has typically been developed
with tools like ROS [21], [7]. We build on knowledge-
based middlewares that handle messaging and communica-
tion seamlessly without much user involvement other than
indicating unicast, broadcast, or multicast addresses and ports
at startup for discovery and transport.

Our software stack includes the Multi-Agent Distributed
Adaptive Resource Allocation (MADARA) [10] project for
networking, threading and knowledge sharing and Group Au-
tonomy for Mobile Systems (GAMS) [8], [9] for algorithms,
simulation and hardware platforms. MAS algorithm devel-
opers map out the requirements of an algorithm and how
agents need to interact or learn from each other. Specifically,
developers identify high-level information that each agent is
keying on to make important decisions.

Algorithms can be coded with C++ or Java as a finite state
machine (FSM) in a Monitor, Analyze, Plan, Execute with
Knowledge (MAPE-K) [16] controller within the GAMS
framework of tools. GAMS algorithms contain three imple-
mentable function stubs: analyze, plan, and execute. Algo-
rithm methods can either be executed sequentially, which
we will focus on in this paper, or they can also be launched
in a thread that operates outside of the MAPE-K controller,
which we will not cover in this paper. If a user can write
down how an agent analyzes, plans and executes in a logical
control flow, they can readily adapt this program into a real
MAS by filling in one or more of these functions with the



Fig. 1: Example line formation with 5 protectors

appropriate logic. While any FSM can technically be directly
placed into the execute method, breaking up the FSM into
analyze and plan stages may help with code legibility and
maintainability.

Algorithms in GAMS typically interact with a GAMS
platform, which has standardized interfaces for movement
and knowledge information like battery levels and general
status information about movement. GAMS also includes
a pose system that provides translations between arbitrary
reference frames (e.g., from a Cartesian grid system in
simulations to Latitude and Longitude in the real world).
The GAMS code repository includes platforms for simulated
quadcopters and boats in the Coppelia Robotics V-REP [22]
platform, and there is also support for GAMS on the Platypus
LLC Lutra [3], [27] boat platform for water-based sensing.
This means that when we design movement-based algorithms
for GAMS, we can deploy them on any supported simulation
or real-world platform.

B. Motivating Scenario and Implementation

To highlight the development approach and explain later
verification and validation stages, we focus on a distributed
MAS algorithm that we have developed and deployed.
Imagine a photographer trying to take a clear picture of
a very important person (VIP). The photographer needs
an unoccluded picture, a clear view, so the photo can be
published in a media outlet for a fee. The VIP, on the other
hand, wants privacy and does not want a sellable picture
taken. We call this challenge the Paparazzi Problem.

A solution to this problem requires that the photographer
is occluded by some external bodies from having a clear
line-of-sight to the VIP. We go about solving this problem
by creating a group of quadcopters or other MAS that
executes a collaborative algorithm whose sole purpose is
to block the line-of-sight of the photographer as the VIP
moves around, ruining the photographer’s shot and hopefully
deterring future photograph attempts.

We implement this as a distributed finite state machine
(FSM) in GAMS and MADARA that allows for an arbitrary
group of agents to serve as protectors of the VIP. This
protector group looks at the position of the VIP and the
position of the photographer and arranges itself in a type
of formation that is intended to occlude the current line-
of-sight between the photographer and VIP and account for
immediate movements by the VIP or photographer to flank

Fig. 2: Example onion formation with 11 protectors

the protector group. We decided to implement two different
versions of protector defense schemes: simple line or arc
formations (shown in Figure 1) and a layered defense that
we call onion defense (shown in Figure 2).

Simple formations such as in Figure 1 essentially create
zones of defense in a Cartesian grid between the VIP (V) and
the photographer (A). If three protector agents are present
(P0, P1, and P2), then P0 always attempts to move directly
between A and V. P1 tries to block line-of-sight to the left of
P0, with orientation assuming P0 looking at the photographer
A. P2 tries to block line-of-sight to the right of P0. If V or A
move left, again with orientation assuming P0 looking at A,
then P0 shifts left and P1 and P2 both shift left as they key
off the new position of P0. If V or A moves right, then P0
shifts right and P1 and P2 follow its lead. If V or A move
forward or backward, up or down, the protector agents P0,
P1, and P2 move into new positions accordingly.

Due to page restrictions of this paper, we cannot show
the full implementation of this simple formation algorithm,
but readers may find the full implementation in the GAMS
repository 1. We will instead describe how the algorithm is
encoded. As mentioned in Section III-A, GAMS provides
a MAPE-K structure for algorithm implementation where
designers fill in an analyze, plan, and execute function
where appropriate. Our implementation overloads all three
of these functions. In analyze, an agent updates internal
variables with current VIP and photographer positions by
accessing the appropriate MADARA variables for other
agents that are provided by the GAMS framework (e.g.,
‘agent.vip1.location‘ and ‘agent.photographer1.location‘). In
plan, the agent uses simple geometry and information about
the size of the protection group to determine where it should
be in the formation using simple geometry functions like
atan2, sin and cos to establish where the agent should move
in the execute function. The next position the agent should
move to is saved in a variable that is then accessed in the
execute function. Any variables modified that are global (in
MADARA, any variable that does not start with a period
(.) is global), are then automatically sent to other agents in
the mission. Note that this is distinctly different from the
message micromanagement required in other MASFs like
ROS, Player/Stage, etc.

The layered onion formation in Figure 2 is an alteration

1http://tinyurl.com/ZoneCoverageSource



of this defensive scheme where an arbitrary depth of simple
formations may be layered between V and A. This is useful
if the robotic agents P0, P1, and P2 are non-holonomic
(i.e., can only move in limited directions), thus opening up
line-of-sight if robot orientation is inappropriate for reacting
to V and A movements. This is also potentially useful for
situations where the environment is causing drifts, e.g., wind
in quadcopters or currents in surface vehicles on water.
Additionally, this scheme of layered defense can also be
useful if A or V have higher velocities or accelerations than
the protector group. Essentially, the onion formation adds
redundant formations to prevent flanking or holes opening
up in defenses due to low holonomicity or environmental
factors.

As with the line formation, the layered onion formation
is implemented in a GAMS algorithm using the analyze,
plan and execute stubs. The layered onion formation uses
the plan function to compute its next location based on
the current position of the VIP and photographer (e.g.,
‘agent.vip1.location‘ and ‘agent.photographer1.location‘), in
a Cartesian grid around an origin at the center of the line
between the VIP and the photographer. The agent stores that
next location in a MADARA variable, and in the execute
function, the agent simply moves to that next location. The
analyze function for onion formation is the same as with the
simple formations.

Each algorithm created in GAMS can also be paired
with a factory method that allows users to call the algo-
rithm remotely by changing the “agent.#.algorithm” variable
in MADARA along with “agent.#.algorithm.args” for any
arguments needed for the algorithm to start. These algo-
rithms can also be sent and processed by all agents via the
“swarm.algorithm“ variable. This factory is useful for later
demonstrations in the real world and allows us to change
algorithms being executed on robotic systems arbitrarily, at
any time, but it is not necessarily required if all users need
is a simulated MAS. We added a factory method so the code
could be included in the GAMS code repository, to make it
available to other developers.

In the next section, we evaluate the distributed algorithm in
Coppelia Robotics V-REP with the default quadcopter model
that is included in the GAMS code repository.

C. Pre-deployment Verification With Confidence

Applications using GAMS and MADARA have been ver-
ified before using software model checking [4], [5], but this
is only appropriate for synchronous models of computation
(distributed systems that barrier between each mission step to
assure safety/collision-avoidance in movements). To handle
more realistic outdoor environments that must deal with
asynchrony in the environment and adversarial agents, we
instead use a verification tool called DEMETER [13] based
on statistical model checking that evaluates the distributed
algorithm within a simulation environment. DEMETER has
several features that favor MAS development. First, it inte-
grates readily with distributed GAMS and MADARA appli-
cations and allows us to run real-time monitors of the multi-

TABLE I: Validation Results for Defensive Algorithms

Disperse Detect Range Failure Trials
1 Loose Long 0.11% 265,896
2 Loose Short 0.35% 114,912
3 Tight Short 0.28% 114,504
4 Tight Long 0.00% 400,000+

agent system within the network by checking locations of
agents and whether or not line-of-sight was prevented with a
simple line intersection conditional coded into a MADARA
application. Essentially, DEMETER allows us to insert real-
time probes into the distributed system to monitor for mission
success or failure.

Second, DEMETER allows us to launch hundreds of
thousands of simulations of an arbitrary number of GAMS
agents in parallel within isolated Linux containers in a com-
puting cluster to gather statistical metrics with confidence,
aggregated across all runs. Third, the tool can identify causes
of algorithm weaknesses and strengths through a process
called input attribution in regards to randomized environ-
mental variable inputs into the mission and environment.
This feature is based on logistic regression to indicate what
variable interactions are likely to cause mission failure, so
improvements can be made or new insights can be gained
about the algorithm. A ROC area-under-the-curve (AUC)
metric calculated using five-fold cross validation is used as
an overall quality of fit score for the logistic regression model
to the actual data. The AUC value ranges between 0.5 for a
poor fit to 1.0 for a perfect fit. We consider values above 0.8
to indicate a good fit.

Since GAMS includes support for quadcopter and boat
models in the Coppelia Robotics V-REP simulation envi-
ronment, we used the built-in models for the quadcopter to
test the reactivity of the simple formation defenses with 4
protectors in simulated scenarios with 1 mobile photographer
and a VIP in five minute simulations. We provided random
inputs concerning initial photographer and VIP location, as
well as short and long detection ranges for the protectors, and
loose and tight initial formations around the VIP to gauge
the effectiveness of the algorithm in dealing with readiness
before a photographer showed up. These random inputs were
tweaked automatically by DEMETER in a type of fuzz
testing and then fed into the logistic regression analyses
that help identify weaknesses or strengths of algorithms, in
regards to effect on mission success. The results of running
nearly 1 million experiments targeting a relative error of 5%
in DEMETER are shown in Table I.

From DEMETER, we learned that a holonomic robot like
a quadcopter running the line or onion defense schemes
protected the VIP over 99% of the time for the duration of the
five minute simulation, regardless of whether initial detection
range was short (a visual range around the VIP) or long (the
starting location of the photographer), and whether the initial
dispersement of protectors around the VIP was tight (always
within 5m of the VIP) or loose (a random starting location
between 5m from the VIP up to the starting location of the



TABLE II: Polynomial Logistic Analysis Results for Input
Attribution

Name β se(β) p-value
θ21 0.0939 0.0170 0.0000
θ20 0.0939 0.0173 0.0000
N2

P -0.0208 0.0044 0.0000

photographer). There is a stratification of confidence in Table
I that shows a tight initial protector formation around the VIP
combined with a long detection range has the best mission
success rate, and this result makes sense.

Results for statistical correlation using polynomial logistic
analysis are shown in Table II. The AUC for this experiment
was 0.87 indicating a good fit of the model to the data. θ0
represents the distance that P0 (the leader) is from V when
A is detected. θ1 represents the distance that P1 starts from
V on detection. NP is the number of protectors. The values
are squared here by the automated system within DEMETER
that pairs random input variables in the simulation to gauge
the impact these had on mission failure. The squares are
useful here because they correlate to distance calculations,
but the automated system also tried every second order
polynomial pairing of all random inputs into the system.
These squared values were just the most promising of the
options tried in the aggregated statistical results.

The lower the p-value, the more statistically significant
the terms are toward mission failure. Out of several dozen
pairings of random input variables into the mission scenario,
including positional information for all protectors, VIP, and
photographer, only the three in Table II are statistically
significant (¡ 0.05). β tells us the factor by which the log
of the odds for the predicate being satisfied increases with
each unit increase, and se(β) is the standard error of that
factor. More details on this type of logical analysis can be
found in [13], including how to replicate the results without
DEMETER.

The results of the logistical regression analyses in Table II
showed that algorithm success in quadcopters depended on
three variables: the initial distance of the lead protector (P0)
from V, the initial distance of the immediate neighbor in the
direction that the photographer is moving (P1 or P2), and
the overall number of protectors. Additionally, DEMETER
was able to show a high statistical correlation to success
rate being higher when P0 initially started at a location
between V and A and not on the other side of V when A was
first recognized as a photographer. This makes sense as P0,
the agent that blocks current line of sight, being near line-
of-sight blocking position should positively affect mission
outcome. Essentially, P0 being lucky enough to already be in
position means that success chance for the overall protective
algorithm is higher. To find this latter result, we had to
modify the starting conditions so the photographer always
started due north and out of initial photograph range while
the protectors were randomly placed around the VIP. By
fixing the photographer (A) position, the DEMETER tool
could better isolate the significance of protector positions in

relation to the initial position of V and A.

D. Real-World Deployment and Validation

Though the DEMETER results were promising, real-world
validation is required to evaluate the performance of the
MAS in outdoor robots. Due to difficulty obtaining clearance
to fly a group of autonomous quadcopters near university
airspace, we chose the Platypus Lutra autonomous surface
vehicle (ASV) [23], [26], [18] for field experiments. The
team of Lutra ASVs deployed were heterogeneous in com-
putational units and associated components, including both
Raspberry Pi 3 and Odroid-XU4 computing boards interfaced
with Navio2 and Platypus control boards respectively. Be-
cause GAMS/MADARA are portable to ARM and Intel, this
heterogeneity was not a problem. A single GAMS platform
was implemented to interact with the PID controller on the
ASVs via move-to-GPS commands, which map to the GAMS
platform’s reference-frame-agnostic interface for movement,
and then compiled and deployed on both the Raspberry Pi-
and the Odroid-based vehicles.

After testing the hardware and software controller stack
for the Lutra ASV in the lab, the team of ASVs was
moved to the water to replicate the scenarios tested in the
DEMETER experiments. One robot was designated the VIP
and four others were assigned as its protectors, running
the GAMS defensive algorithms outlined in Section III-B.
The remaining ASV played the role of the photographer
and was given a waypoint following algorithm guiding its
movement around the VIP. The VIP was simply allowed
to hold its position and trust the protectors to occlude
photographs. We deployed a downward-facing 4K camera
aboard a DJI Phantom Professional 3 hovering over the lake
to capture footage for analysis and algorithm performance
evaluation. The experimental setup and sample trajectory of
the photographer ASV are shown in Figure 3.

A total of three scenarios were tested: two variations of
onion defense and one of line defense. In each scenario,
the protectors attempt to position themselves between the
photographer and VIP to successfully occlude photos. The
photographer circumnavigates the VIP in a clockwise di-
rection as the protectors adjust their position to maintain
coverage. In order to evaluate the effectiveness of the pro-
tection algorithms and coverage provided by the team, the
video footage collected from above was post-processed in
OpenCV, using thresholding to segment the boats from the
environment. For each experiment, one complete circumnav-
igation of the VIP by the photographer was considered. The
number of video frames where the protectors successfully
occluded the photographer’s line of sight to the VIP was
divided by the total number of frames in the trial to obtain
the coverage success rate. Line of sight determination was
made by computing the line between the photographer and
VIP and then evaluating whether this line passed through the
protection region of any protector agent. Using the known
size of the ASV in both image and world frames, the desired
protection radius around each defensive agent was scaled
accordingly. A sample of an original and post-processed



Fig. 3: Experimental Setup

(a) Unprocessed Image (b) Processed Image

Fig. 4: Video Analysis Showing Line of Sight Computation.
(a) shows an unprocessed frame with labeled ASVs. (b)
shows a processed image with the three protection radii
tested around the protectors [P0, P1, P2, P3].

video frame showing the protection radii considered (1.5m,
3m, 5m) and line of sight computation is given in Figure 4.
The coverage success rate for all scenarios with stated
protection radius settings is presented in Table III.

The results show a clear and unsurprising correlation be-
tween the coverage success rate and the size of the protection
region. Since the DEMETER experiments were conducted
with a protection radius of 5 meters, the corresponding
real world results are of particular interest, especially since
the real world experiments were using a less mobile, non-
holonomic platform rather than the quadcopters in the simu-
lation. Across all the scenarios, the lowest coverage success
ratio achieved with this radius was 97 percent, which is in
line with the verification results from DEMETER, especially
when environmental factors such as localization error from
GPS are considered.

The fact that line defense outperformed onion defense
is not surprising given that the current implementation of

Scenario 1.5m Radius 3m Radius 5m Radius
Line Defense 0.595859 0.894343 0.995757
Onion Trial 1 0.594300 0.667714 0.973571
Onion Trial 2 0.572000 0.883238 0.981429
Onion Fast 0.827000 0.952000 1.000000

TABLE III: Video Analysis Results

the onion protection scheme requires ten or more agents to
achieve proper layering. An interesting result came out of
the final scenario tested, where the photographer was faster
than the VIP and the protectors. Though we initially expected
the algorithm to perform worse in this scenario, the results
indicate it outperforms both onion defense and line defense
schemes with agents of uniform locomotion capabilities. We
suspect that due to the increased speed of the photographer,
the protecting agents are typically moving into position rather
than holding their assigned positions as is more often the
case in the slower photographer scenario, allowing for better
coverage of the VIP.

Because the boats are non-holonomic, when they drift out
of their assigned formation positions they will often circle
back, thereby opening up gaps in the coverage. This effect
could be mitigated in the future by improving ASV station
keeping with more intelligent maneuvers and behavior. An-
other factor that affected performance was the reactionary na-
ture of the algorithms; the lead defender occasionally would
not react fast enough to a moving photographer, allowing
for a line of sight to open up to one side of the protector
formation. This contingency can be better accounted for in
future versions of the defensive algorithms by anticipating
photographer movements based on past movements, but the
current version is sufficient for occluding the VIP from the
photographer agent at the 5 meter protection radius. This
claim is supported with both statistical confidence through
the DEMETER results and through the post-processing of
real-world demo videos via OpenCV.

IV. CONCLUSION

In this paper, we have described a methodology based on
open source middlewares and tools in GAMS and MADARA
to design a mission-focused distributed artificial intelligence
capability, the application of statistical model checking with
input attribution in the DEMETER tool to large scale sim-
ulations of the group-based algorithm we designed, and a
successful transition of the distributed algorithm to the real
world in unmanned surface vehicles developed by Platypus
LLC. We forensically analyzed real world performance of
the algorithm with OpenCV in video feeds to isolate agents
and evaluate their performance versus their objectives.

Future work may focus on scale of cooperating agents,
additional photographers and VIPs, predictive algorithms that
do not just react to adversaries, and better statistical model
checking tools and techniques for evaluating algorithms
and robotics platforms before deployment. Additionally, we
believe more rigorous verification techniques like software
model checking may be applicable to asynchronous models



of computation, though breakthroughs in reducing state space
may be necessary for such tools to be useful.

REFERENCES

[1] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. Jade: A software
framework for developing multi-agent applications. lessons learned.
Information and Software Technology, 50(1):10–21, 2008.

[2] G. Biggs, R. Rusu, T. Collett, B. Gerkey, and R. Vaughan. All the
robots merely players: History of player and stage software. 2013.

[3] J. Blum. Connecting run-time metrics to outcome performance of
team attack and defense. Master’s thesis, Carnegie Mellon University
Pittsburgh, PA, 2016.

[4] S. Chaki and J. Edmondson. Model-driven verifying compilation of
synchronous distributed applications. In International Conference on
Model Driven Engineering Languages and Systems, pages 201–217.
Springer, 2014.

[5] S. Chaki and J. Edmondson. Toward parameterized verification of
synchronous distributed applications. In Proceedings of the 2014
International SPIN Symposium on Model Checking of Software, pages
109–112. ACM, 2014.

[6] T. H. Collett, B. A. MacDonald, and B. P. Gerkey. Player 2.0: Toward
a practical robot programming framework. In Proceedings of the
Australasian Conference on Robotics and Automation (ACRA 2005),
page 145, 2005.

[7] S. Cousins and B. Gerkey. Milestones: First roscon and osrf [ros
topics]. Robotics & Automation Magazine, IEEE, 19(3):14–15, 2012.

[8] A. Dukeman, J. A. Adams, and J. Edmondson. Extensible collaborative
autonomy using gams. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing, pages 281–283. ACM, 2016.

[9] J. Edmondson, S. Chaki, J. Hansen, and D. Kyle. Software solutions
for distributed autonomous multi-functional robotics in space. In AIAA
SPACE 2016, page 5327, 2016.

[10] J. Edmondson and A. Gokhale. Design of a scalable reasoning engine
for distributed, real-time and embedded systems. In International
Conference on Knowledge Science, Engineering and Management,
pages 221–232. Springer, 2011.

[11] M. Fisher and M. Wooldridge. On the formal specification and veri-
fication of multi-agent systems. International Journal of Cooperative
Information Systems, 6(01):37–65, 1997.

[12] B. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In Proceedings
of the 11th international conference on advanced robotics, volume 1,
pages 317–323, 2003.

[13] J. P. Hansen, S. Chaki, S. Hissam, J. Edmondson, G. A. Moreno, and
D. Kyle. Input attribution for statistical model checking using logistic
regression. In International Conference on Runtime Verification, pages
185–200. Springer, 2016.

[14] B. Herd. Statistical runtime verification of agent-based simulations.
PhD thesis, KINGS COLLEGE LONDON, 2015.

[15] R. Jhala and R. Majumdar. Software model checking. ACM Computing
Surveys (CSUR), 41(4):21, 2009.

[16] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003.

[17] J. Kramer and M. Scheutz. Development environments for autonomous
mobile robots: A survey. Autonomous Robots, 22(2):101–132, 2007.

[18] P. LLC. Platypus lutra platform description, 2016.
[19] A. Lomuscio, H. Qu, and F. Raimondi. Mcmas: A model checker for

the verification of multi-agent systems. In International Conference
on Computer Aided Verification, pages 682–688. Springer, 2009.

[20] W. Penczek and A. Lomuscio. Verifying epistemic properties of
multi-agent systems via bounded model checking. In Proceedings
of the second international joint conference on Autonomous agents
and multiagent systems, pages 209–216. ACM, 2003.

[21] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. Ros: an open-source robot operating system.
In ICRA workshop on open source software, volume 3, page 5, 2009.

[22] E. Rohmer, S. P. Singh, and M. Freese. V-rep: A versatile and
scalable robot simulation framework. In 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 1321–1326.
IEEE, 2013.

[23] P. Scerri, P. Velagapudi, B. Kannan, A. Valada, C. Tomaszewski,
J. Dolan, A. Scerri, K. S. Shankar, L. Bill, and G. Kantor. Real-world
testing of a multi-robot team. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-Volume 3,

pages 1213–1214. International Foundation for Autonomous Agents
and Multiagent Systems, 2012.

[24] M. Stoelinga. Alea jacta est: verification of probabilistic, real-time
and parametric systems. PhD thesis, University of Nijmegen, 2002.

[25] R. Trillo, S. Ilarri, and E. Mena. Comparison and performance
evaluation of mobile agent platforms. In Autonomic and Autonomous
Systems, 2007. ICAS07. Third International Conference on, pages 41–
41. IEEE, 2007.

[26] A. Valada, P. Velagapudi, B. Kannan, C. Tomaszewski, G. Kantor,
and P. Scerri. Development of a low cost multi-robot autonomous
marine surface platform. In Field and Service Robotics, pages 643–
658. Springer, 2014.

[27] G. A. Wilde, R. R. Murphy, D. A. Shell, and C. M. Marianno. A
man-packable unmanned surface vehicle for radiation localization and
forensics. In 2015 IEEE International Symposium on Safety, Security,
and Rescue Robotics (SSRR), pages 1–6. IEEE, 2015.

[28] H. L. S. Younes, M. Z. Kwiatkowska, G. Norman, and D. Parker.
Numerical vs. statistical probabilistic model checking. STTT, 8(3),
2006.


